156 research outputs found

    Today's virtual water consumption and trade under future water scarcity

    Get PDF
    The populations of most nations consume products of both domestic and foreign origin, importing together with the products the water which is expended abroad for their production (termed 'virtual water'). Therefore, any investigation of the sustainability of present-day water consumption under future climate change needs to consider the effects of potentially reduced water availability both on domestic water resources and on the trades of virtual water. Here we use combinations of Global Climate and Global Impact Models from the ISI–MIP ensemble to derive patterns of future water availability under the RCP2.6 and RCP8.5 greenhouse gas (GHG) concentrations scenarios. We assess the effects of reduced water availability in these scenarios on national water consumptions and virtual water trades through a simple accounting scheme based on the water footprint concept. We thereby identify countries where the water footprint within the country area is reduced due to a reduced within-area water availability, most prominently in the Mediterranean and some African countries. National water consumption in countries such as Russia, which are non-water scarce by themselves, can be affected through reduced imports from water scarce countries. We find overall stronger effects of the higher GHG concentrations scenario, although the model range of climate projections for single GHG concentrations scenarios is in itself larger than the differences induced by the GHG concentrations scenarios. Our results highlight that, for both investigated GHG concentration scenarios, the current water consumption and virtual water trades cannot be sustained into the future due to the projected patterns of reduced water availability

    Reconciling spatial and temporal soi moisture effects on aftrnoon rainfall

    Get PDF
    Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks

    Land-surface controls on afternoon precipitation diagnosed from observatorial data: uncertainties and confounding factors

    Get PDF
    The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface turbulent heat fluxes, as assessed via the evaporative fraction (EF), i.e., the ratio of latent heat to the sum of latent and sensible heat, in particular under convective conditions. Our study investigates the poorly understood link between EF and precipitation by relating the before-noon EF to the frequency of afternoon precipitation over the contiguous US, through statistical analyses of multiple EF and precipitation data sets. We analyze remote-sensing data products (Global Land Evaporation: the Amsterdam Methodology (GLEAM) for EF, and radar precipitation from the NEXt generation weather RADar system (NEXRAD)), FLUXNET station data, and the North American Regional Reanalysis (NARR). Data sets agree on a region of positive relationship between EF and precipitation occurrence in the southwestern US. However, a region of strong positive relationship over the eastern US in NARR cannot be confirmed with observation-derived estimates (GLEAM, NEXRAD and FLUXNET). The GLEAM–NEXRAD data set combination indicates a region of positive EF–precipitation relationship in the central US. These disagreements emphasize large uncertainties in the EF data. Further analyses highlight that much of these EF–precipitation relationships could be explained by precipitation persistence alone, and it is unclear whether EF has an additional role in triggering afternoon precipitation. This also highlights the difficulties in isolating a land impact on precipitation. Regional analyses point to contrasting mechanisms over different regions. Over the eastern US, our analyses suggest that the EF–precipitation relationship in NARR is either atmospherically controlled (from precipitation persistence and potential evaporation) or driven by vegetation interception rather than soil moisture. Although this aligns well with the high forest cover and the wet regime of that region, the role of interception evaporation is likely overestimated because of low nighttime evaporation in NARR. Over the central and southwestern US, the EF–precipitation relationship is additionally linked to soil moisture variations, owing to the soil-moisture-limited climate regime

    Measuring scarce water saving from interregional virtual water flows in China

    Get PDF
    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index. We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower water stress index (WSI) to that with higher both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy

    Fewer rainy days and more extreme rainfall by the end of the century in Southern Africa

    Get PDF
    Future changes in the structure of daily rainfall, especially the number of rainy days and the intensity of extreme events, are likely to induce major impacts on rain-fed agriculture in the tropics. In Africa this issue is of primary importance, but the agreement between climate models to simulate such descriptors of rainfall is generally poor. Here, we show that the climate models used for the fifth assessment report of IPCC simulate a marked decrease in the number of rainy days, together with a strong increase in the rainfall amounts during the 1% wettest days, by the end of the 21st century over Southern Africa. These combined changes lead to an apparent stability of seasonal totals, but are likely to alter the quality of the rainy season. These evolutions are due to the superposition of slowly-changing moisture fluxes, mainly supported by increased hygrometric capacity associated with global warming, and unchanged short-term atmospheric configurations in which extreme events are embedded. This could cause enhanced floods or droughts, stronger soil erosion and nutriment loss, questioning the sustainability of food security for the 300 million people currently living in Africa south of the Equator

    Active and passive-source seismic imaging for exploration of deep-seated massive sulphide mineralization in the Zinkgruvan mine, south-central Sweden

    Get PDF
    [EN]This communication presents the acquisition of active and passive source seismic data in the Zinkgruvan mine in Sweden in an effort to develop highly resolved and cost-effective exploration method

    Conservation status of a recently described endemic land snail, Candidula coudensis, from the Iberian Peninsula

    Get PDF
    Research ArticleWe assessed the distribution, population size and conservation status of Candidula coudensis, a recently described endemic land snail from Portugal. From March 2013 to April 2014, surveys were carried out in the region where the species was described. We found an extent of occurrence larger than originally described, but still quite small (13.5 km2). The species was found mainly in olive groves, although it occurred in a variety of other habitats with limestone soils, including grasslands, scrublands and stone walls. Minimum population estimate ranged from 110,000–311,000 individuals. The main identified potential threats to the species include wildfires, pesticides and quarrying. Following the application of IUCN criteria, we advise a conservation status of either “Least Concern” or “Near-threatened” under criterion D (restricted population)info:eu-repo/semantics/publishedVersio

    Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate

    Get PDF
    Acknowledgments: This paper was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. Furthermore, this work has been financially supported by the Leibniz Society (project ECONS), and the Stordalen Foundation (JFD). For certain calculations, the software packages pyunicorn (Donges et al. 2013a) and igraph (CsaÂŽrdi and Nepusz 2006) were used. The authors would like to thank Manoel F. Cardoso, Niklas Boers, and the reviewers for helpful comments on the manuscript. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPostprin

    Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    Get PDF
    Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD

    Bioenergy production and sustainable development: science base for policymaking remains limited

    Get PDF
    The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations. The scope and methodological approaches in studies differ widely and only a small share of the studies sufficiently reports on context and/or baseline conditions, which makes it difficult to get a general understanding of the attribution of impacts. Nevertheless, we identified regional patterns of positive or negative impacts for all categories – environmental, economic, institutional, social and technological. In general, economic and technological impacts were more frequently reported as positive, while social and environmental impacts were more frequently reported as negative (with the exception of impacts on direct substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production
    • 

    corecore